边缘计算是智能安防的主要瓶颈

发布日期:2019-05-20 11:38:48
浏览次数:36
分享到: 0

边缘计算是智能安防的主要瓶颈






  1.应用层面  



目前,产品落地上主要体现在视频结构化(对视频数据的识别和提取)、生物特征识别(指纹识别、人脸识别等)、物体特征识别(车牌识别系统)等应用方向。安防系统每天产生的海量图像和视频信息造成了严重的信息冗余,识别准确度和效率不够,并且可应用的领域较为局限。


视频监控系统作为前后端分属较为明显的物联网系统,在边缘计算的应用方面有很大潜力。摄像机作为前端采集设备,目前不仅清晰度大大提高,而且对智能化需求也越来越强,因此行业内正在极力推进摄像机能够实现对视频图像内容的实时处理,不但能够极大地降低信息传输系统和后端设备的负担,同时还能够提升整个安防系统的响应速度,为安防领域一直提倡的“事前预警、事中制止、事后复核”理念走向现实提供最有利的技术支撑。


比如在人脸识别应用当中,通过前端抓拍+中心分析的前后端智能相结合的模式,将人脸识别智能算法前置,在前端摄像机内置高性能智能芯片,通过边缘计算将人脸识别抓图的压力分摊到前端,解放中心的计算资源,以集中优势计算资源做更高效的分析。



  2.技术层面  



现阶段的人工智能,通常是指依赖于海量数据和深度学习,通过监督或非监督方式训练而获得的智能,代价是巨大的计算和存储复杂度,随着算法多样性和复杂度的进一步提升,运算和存储的代价都会大幅增长。传统的解决方案是,大量的数据是在云端的数据中心被分析并决策后,再将结果发还给终端,也就是说,云端负责人工智能的部分,终端(也就是边缘端)负责数据采集以及执行。



  3.云端的难题  



1)数据传输成本高。随着数据量激增,对传输带宽压力也不断增加,边缘端的无线传输模块必须支持高速无线传输,这就需要更大的功耗,与边缘端低功耗的需求是冲突的。


2)许多终端应用场景对延时非常敏感。比如平安城市中的异常行为检查、人流量检测等,都需要实时预警,延时较长是无法被接受的。


3)像智能家居等场景对安全和隐私的需求,也使得云计算的发展受限,在数据传输到数据中心前,通过网络边缘设备对数据进行分析处理,匿名和加密,可以无需将所有终端数据都传输给云端,进而有效地解决这些问题。


边缘计算可以很好的解决这些问题,根据实际应用需求,边缘端既可以独立作为智能处理模块,也可以和云端配合(边缘端做一些分析处理和过滤,再交给云端),这样的解决方案对延时、带宽和功耗等都有明显优势。



文章来源:《中国安防》杂志

作者:邓若冰  AiRiA研究院